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The catalytic and selective functionalization of carbon—hydrogen
and carbon—carbon bonds by transition-metal complexes is a
significant challenge for organometallic chemistry. The lack of
required prefunctionalizations renders such processes ecol ogi-
cally and economically attractive. C—H activations are a vibrant
and very active research area with impressive progress.*
Compared to C—H activations, the development of related C—C
activation reactions lags behind.? Examples for efficient enan-
tioselective processes are scarce.® Hartwig and co-workers
recently showed that triarylcarbinols and rhodium complexes
are in equilibrium with the corresponding diarylketones and aryl-
rhodium species.* Substrates having a stronger bias toward this
p-carbon elimination pathway can provide an attractive entry
into highly reactive organometallic species. In this respect,
strained tertiary alcohols are performing substrates to generate
alkyl metals.® Especially symmetrically substituted cyclobutane
derivatives are an attractive substrate class, as a selective
insertion into one of the two enantiotopic C—C bonds of the
cyclobutane ring opens opportunities for enantioselective activa-
tions. We® and others” investigated this reactivity to access
transient enantioenriched organometallic species and subse-
quently capitalized on their reactivity in downstream reactions.
The significance and vast occurrence of methyl substituted
quaternary stereogenic centers in natural products prompted us
to explore the applicability of rhodium-catalyzed S-carbon
cleavages for their selective construction.® Murakami obtained
linear ketones with racemic tertiary methyl substituents by
rhodium(l)-catalyzed addition of arylboronic acids to cyclobu-
tanones.® This process was extended toward an enantiosel ective
construction of benzocyclopentanones and dihydrocoumarines
with cyclic stereocenters using an intramolecular addition.”s9
Herein we report the construction of acyclic quaternary stereo-
genic centers from cyclobutanol derivatives using a chiral
rhodium(l) catalyst. We anticipated accessing crucial rhodium
cyclobutanoxide 2 through ligand exchange of cyclobutanol 1
and a rhodium(l) hydroxy complex. Subsequent enantioselective
p-carbon cleavage of 2 would lead to alkyl rhodium(l) species
3, that might hydrolyze in the presence of a suitable proton
source or 1 itself (Scheme 1).

Scheme 1. Rh-Catalyzed Ring-Opening/Protonation Process
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Heating trans-1ain the presence of catalytic amounts of [Rh(OH)-
(cod)]2 and (R)-Binap (L 1) in toluene resulted in the anticipated
ring-opening and gave ketone 4a in excellent yield albeit very
poor enantioselectivity (Table 1, entry 1). A short survey of chiral
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ligands led to the identification of DTBM-Segphos (L 8) as the
most selective ligand, providing ketone 4a in 87% ee (Entry
8).1° Using dioxane as solvent and 15 equivalents of water further
improved the selectivity to 92% ee (entries 9—11).

Table 1. Optimization of the C—C Cleavage/Protonation Reaction®

Et>o<OH 2.5 mol% [Rh(OH)(cod)] I

.5 mol% cod)]p EN
BnO Ph 6 mol% L* toluene, 110°C  BnO Ph

1a 4a

entry ligand L* yield [%]° ee [%]°
1 (R)-Binap (L1) 93 7
2 (R)-H8-Binap (L2) 96 10
3 (R)-MeOBiphep (L3) 94 16
4 (R)-Segphos (L4) 99 20
5 (R)-Difluorphos (L5) 83 19
6 (R)-DM-Segphos (L 6) 87 29
7 (R)-DTBM-MeOBiphep (L7) 94 79
8 (R)-DTBM-Segphos (L 8) 93 87
gd (R)-DTBM-Segphos (L 8) 93 91
10° (R)-DTBM-Segphos (L 8) 98 90
119e (R)-DTBM-Segphos (L 8) 99 92

@ Conditions: 0.1 mmol 1a, 2.5 mol % [Rh(OH)(cod)],, 6.0 mol %
L*, toluene (0.25 M), 110 °C, 2 h. Plsolated product. cee’'s were
determined by HPLC with a chiral stationary phase. @ 15 equiv of H,0O.
¢ Dioxane.

With these optimized conditions, we then explored the scope
of the process (Table 2). The selectivity of the cleavage islargely
independent from the substitution pattern on the 1-position of
the cyclobutanol (Entries 1—5). Cyclobutanols bearing aromatic
substituents in the 3-position generally give rise to indanols
through a 1,4-rhodium shift/1,2-addition sequence.®® For ex-
ample, indanol 5 was obtained exclusively with Difluorphos (L 5)
from 1g (entry 8). Notably, the bulky DTBM-MeOBiphep (L7)
mostly suppresses this pathway and instead provides 4g in good
yields (entry 9). A 2-pyridyl substituent as well blocks this 1,4-
Rh shift by forming a stable chelate with the nitrogen atom and
providing the ketones 4h and 4i (entries 10—12). Conforma-
tionally restricted spirocyclic substrates yield the linear ketone
4e and 4f (entries 6—7).

We subsequently applied this reaction for an enantioselective
synthesis of 4-ethyl-4-methyl-octane (7), the simplest unbranched
saturated hydrocarbon with a quaternary stereogenic center
(Scheme 2).** 1j provides under the aforementioned conditions
ketone 4j in 99% yield and an ee-value of 93% (entry 13).
Additionally, 1j can be directly converted via a one pot reaction
into its dithiane derivative 6 in 86% yield over both steps.
Subsequent Raney-nickel promoted desulfurization gave (S)-4-
ethyl-4-methyl-octane (7) in 99% vyield.

Deuterium-labeling experiments of trans-1a revealed that the
protonation does not occur as originally proposed at the alkyl-
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Table 2. Scope of the C—C Cleavage/Protonation Process?®

yield®  ee

entry 1 4 %) (%)

¢ Me o 4a 99 92
S
Ph
20t Bro 4a 81 90
Me O
3 Et 4 97 91
BnO Et
Me
4" Et 4e¢ 71 >85
BnO tBu
Me O
5 Et o~ 4d 86 97
BnO Ph
Me, o
6 W 4 77 95
Bu
Me, o
7 O’ I,4t 75 95
[0 N
cl % Q 77
8 N
8 Soiady Y
9" 72 95
10" 60 98
11 99 97
12° 54 90
13 99 93

Et Me Et

a Conditions: 0.1 mmol 1, 2.5 mol % [Rh(OH)(cod)],, 6.0 mol % L8,
toluene (0.25 M), 110 °C, 12 h. Plsolated product. ®ee's were
determined by HPLC with a chiral stationary phase. ¢ 15 equiv of H,0O,
dioxane. ®ent-L 8. F 1.5 equiv of Cs,CO;, 120 °C, xylene. 9L 5. "L7.

Scheme 2. Synthesis of (S)-4-Ethyl-4-methyl-octane (7)*

Bu OH 4 Me O Meﬁ b) Me
>O< - BUM BUMM 99 % B”+
Et Me Ei Me B g Ve gl Pr
1 4 86 %, 93 % ee 7

@ Conditions: (a) 2.5 mol % [Rh(OH)(cod)],, 6 mol % L 8, toluene, 110
°C, 4 h, then BF3- Et,0O, propane-1,3-dithiol, 23 °C, 12 h; (b) Raney-nickel,
MeOH, 23 °C, 2 h.

rhodium stage (3) (Scheme 3). Instead, we observed a 85% incorpora-
tion of one deuterium atom a to the carbonyl group, suggesting that
amore stable rhodium enolate is formed via a 1,3-rhodium shift.”**2
The subsequent deuteration quench proceeded with a diastereomeric
retio of 86:14 in favor of the depicted (2S3R) isomer d-4a. Subjecting
cis-lato theidentical reaction conditions using ent-L 8 as ligand gave
diastereomer (2R 3R)-d-4a with adr of 15:85, indicating aremarkably
sdlective catalyst controlled protonation.™

In summary, we demonstrated a rhodium-catalyzed C—C bond
cleavage/protonation sequence providing an entry to acyclic methyl

Scheme 3. A 1,3-Rh Shift Leads to Diastereoselective Deuteration
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substituted quaternary stereogenic centers in excellent enantiose-
lectivities. Its utility was demonstrated by a synthesis of (S)-4-ethyl-
4-methyl-octane, the simplest hydrocarbon with a quaternary
stereogenic center. Further ongoing research in this direction is
directed to the development of methods for the activation of C—C
bonds enabling novel and useful transformations.
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